Support & Downloads

Quisque actraqum nunc no dolor sit ametaugue dolor. Lorem ipsum dolor sit amet, consyect etur adipiscing elit.

s f

Contact Info
198 West 21th Street, Suite 721
New York, NY 10010
+88 (0) 101 0000 000
Follow Us

Cybersecurity - AI, Machine & Deep Learning Methods

réf : CYB-AI
Formation SCADA - Cybersécurité des systèmes industriels

Objective: This pioneering course blends the domains of cyber security and artificial intelligence. It has been designed for cyber security professionals who want to understand and implement AI models for exploring logs, security events, and other types of data. Classifying analytics is especially encouraged as well as NLP and Image Recognition techniques based on types of data sources found in the cybersecurity domain.
Where coding is needed, Python and some selected libraries will be used. The expected audience is expected to be familiar with scripting coding but is not required to master any specific language.

Objectifs pédagogiques

  • Understand the concepts of AI, ML and DL. Their strengths and limitations
  • Generate different visualisations of your data by applying statistical models to real cybersecurity problems in meaningful ways
  • Familiarise with ML frameworks and methods
  • Identify the best suited ML models to solve complex problems
  • Work in specific cybersecurity use cases while being supervised by an AI expert


Python or similar scripting language (like R, Matlab, etc)

Notions in AI/Machine Learning

Public concerné

Engineers, developers…


  • DL as an approach to AI
  • Neural Networks and Types
  • Data Types
  • Strengths and Limits of ML
  • Image recognition
  • Complex regressions Use Case
  • Keras as Reference & Doc Framework
  • PyTorch installation and Setup
  • Toy-study in Pytorch
  • NLP and Applications
  • Data Cleaning & Preprocessing
  • Tokenization
  • Stop-words, stemming & lemmatization
  • Text Data Vectorization
  • BERT, Transformers (and Adapters)
  • Theory
  • KNN, K-Means
  • Text classification & clustering (using scikit-learn)
  • Put the toy-study results into test
  • Supplemental Methods to be defined
  • Model selection and evaluation
  • Visualisation
  • Analytics based on data sources
  • AI Topics in Cybersecurity
  • Introduction
  • Network threat analysis
  • Text Classification Methods to Detect Malware
  • Process Behaviour Analysis
  • Abnormal system behaviour detection
  • Using ML to Detect Malicious URLs
  • (Note: This can be replaced by a Transformers use-case: using a pre trained BERT model, i.e. from hugging face)
  • Performance discussion, visualisation and comparison
  • Intuition vs Statistics
  • Univariate Numerical Analysis
  • Bivariate Numerical Analysis
  • Univariate (Mean, Median, Percentile, SD)
  • Bivariate (Correlation, Pearson Correlation)
  • Skewness & bias estimations
  • (basic) Bayes & Max entropy methods
  • Confidence Level approach
  • Statistical Methods as a tool for performance hypothesis testing
  • Improve the DL model’s performance
  • Transaction fraud detection
  • Text-based malicious intent detection
  • Machine vs human differentiation – or – Business data risk classification
  • Using ML as Intrusion Detection System – or –
  • ML for Same Person Identification (prefered choice)
  • Interactive Multiple Choices Questions Revision
  • Closing Words

Équipe pédagogique

Professionnel expert dans la cybersécurité

Moyens pédagogiques et techniques

  • Espace intranet de formation.
  • Documents supports de formation projetés.
  • Exposés théoriques
  • Étude de cas concrets
  • Mise à disposition en ligne de documents supports à la suite de la formation.

Dispositif de suivi

  • Émargement numérique.
  • Mises en situation.
  • Formulaires d’évaluation de la formation.
  • Certificat de réalisation de l’action de formation.

Vous avez une question ?


    5 (35 heures)


    3490 € HT


    Parcel Sandbox