Détails
- 4 Sections
- 12 Lessons
- 4 Days
Expand all sectionsCollapse all sections
- Dag 1: Geavanceerde Statistische Analyse en Data-Exploratie (7 uur)3
- 1.1Statistische methoden voor geavanceerde analyse (3 uur) Werken met descriptieve statistieken en distributiemodellen. Detecteren van uitschieters en anomalieën. Praktijk: Analyseren van een dataset en identificeren van trends en patronen.
- 1.2Feature engineering en datavoorbereiding (2 uur) Data cleaning, ontbrekende waarden en normalisatie. Variabele selectie en transformaties voor machine learning. Praktijk: Voorbereiden van een dataset voor predictive analytics.
- 1.3Data-aggregatie en verbanden analyseren (2 uur) Werken met Pivot-tabellen, correlatie-analyse en clustering. Praktijk: Uitvoeren van een clusteranalyse in Python of R.
- Dag 2: Machine Learning en Voorspellende Modellen (7 uur)3
- 2.1Introductie tot machine learning en algoritmes (3 uur) Overzicht van supervised vs. unsupervised learning. Lineaire regressie, beslissingsbomen en neurale netwerken. Praktijk: Trainen en evalueren van een regressiemodel voor voorspellende analyse.
- 2.2Modeloptimalisatie en hyperparameter-tuning (2 uur) Gebruik van cross-validatie en modelvergelijking. Feature importance en modelinterpretatie. Praktijk: Optimaliseren van een machine learning-model met hyperparameter-tuning.
- 2.3Anomaliedetectie en patroonherkenning (2 uur) Detecteren van fraude en afwijkingen in datasets. Werken met unsupervised learning-technieken zoals K-Means clustering. Praktijk: Uitvoeren van een anomaliedetectie op financiële transacties.
- Dag 3: Big Data en Geavanceerde Data-analyse (7 uur)3
- 3.1Werken met Big Data en gedistribueerde verwerking (3 uur) Introductie tot Hadoop, Spark en cloud-gebaseerde dataplatforms. Dataverwerking met Apache Spark en PySpark. Praktijk: Analyseren van een grote dataset met Apache Spark.
- 3.2Text mining en sentimentanalyse (2 uur) Werken met Natural Language Processing (NLP). Sentimentanalyse toepassen op social media-gegevens. Praktijk: Bouwen van een sentimentanalyse-model voor klantfeedback.
- 3.3Datavisualisatie en storytelling met dashboards (2 uur) Gebruik van Power BI, Tableau of Python (Matplotlib, Seaborn). KPI’s en trends visueel presenteren. Praktijk: Maken van een interactief dashboard met een analyse van verkoopdata.
- Dag 4: Automatisering, Integratie en Case Study (7 uur)3
- 4.1Automatiseren van data-analyse en workflows (3 uur) Werken met ETL-processen en geautomatiseerde pipelines. Integratie met SQL, API’s en cloud-databases. Praktijk: Automatiseren van een data-analyseworkflow met Python of SQL.
- 4.2Gegevenskwaliteit en compliance (GDPR, ISO 27001) (2 uur) Beheer van privacy en databeveiliging in data-analyse. Implementeren van compliance-controles en data-governance. Praktijk: Analyseren en opschonen van datasets met privacyregels.
- 4.3Case Study en Afsluiting (2 uur) Ontwerpen van een volledige geavanceerde data-analyse pipeline. Praktijk: Deelnemers presenteren een business case met hun eigen analyse.
Datavisualisatie en storytelling met dashboards (2 uur) Gebruik van Power BI, Tableau of Python (Matplotlib, Seaborn). KPI’s en trends visueel presenteren. Praktijk: Maken van een interactief dashboard met een analyse van verkoopdata.
Préc.
Gegevenskwaliteit en compliance (GDPR, ISO 27001) (2 uur) Beheer van privacy en databeveiliging in data-analyse. Implementeren van compliance-controles en data-governance. Praktijk: Analyseren en opschonen van datasets met privacyregels.
Suivant