Python – Programmation Parallèle et le Calcul Distribué

0 Enrolled
14 week
  • 14 week
  • 30
  • 0
  • no
1,500.00€

Aperçu du cours

Introduction à la Programmation Parallèle et au Calcul Distribué
Apprenez les bases de la programmation parallèle et du calcul distribué avec Python, des techniques essentielles pour traiter des volumes importants de données et effectuer des calculs complexes de manière efficace. Ce module initie aux concepts de base et aux configurations systèmes nécessaires.

Librairies Python pour le Parallélisme
Maîtrisez les librairies Python spécialisées comme multiprocessing, concurrent.futures, et Dask. Vous apprendrez comment elles facilitent la programmation parallèle et distribuée, permettant une gestion plus efficace des tâches et des processus.

Implémentation de Solutions de Calcul Distribué
Explorez comment déployer et gérer des environnements de calcul distribué utilisant des frameworks comme Apache Spark avec PySpark. Ce cours offre des compétences pratiques sur la configuration, l’exécution et l’optimisation de calculs sur des clusters de serveurs.

Optimisation et Scalabilité
Focus sur les techniques d’optimisation des performances pour les applications parallèles et distribuées. Apprenez à identifier et résoudre les goulots d’étranglement, à scalabiliser les applications pour augmenter leur efficacité et à gérer les ressources de manière dynamique.

Projets Pratiques et Études de Cas
Engagez-vous dans des projets pratiques et des études de cas qui simulent des scénarios réels d’utilisation du calcul distribué et de la programmation parallèle. Ces exercices permettent de solidifier les connaissances et de préparer les participants à des applications professionnelles immédiates.

Prérequis

  • Connaissance de base de la programmation Python
  • Compréhension des concepts fondamentaux de la programmation informatique

Fonctionnalités

  • Comprendre les concepts et les principes de la programmation parallèle et du calcul distribué
  • Utiliser les bibliothèques de programmation parallèle en Python pour exploiter les ressources multicœurs
  • Maîtriser les techniques de calcul distribué avec dask pour résoudre des problèmes de grande envergure
  • Optimiser les performances des programmes Python en utilisant des techniques d'optimisation appropriées
  • Acquérir les compétences nécessaires pour concevoir et mettre en œuvre des solutions parallèles et distribuées en Python

Public ciblé

  • développeurs Python
  • ingénieurs logiciels
  • data scientists
  • toute personne souhaitant améliorer les performances de ses programmes Python

Détails

  • 8 Sections
  • 30 Lessons
  • 14 Weeks
Expand all sectionsCollapse all sections

Instructeur

Avatar de l’utilisateur

bprigent

0.0
0 commentaire
0 Students
841 Courses